Skip to contents

These functions prepare the data by reshaping it and generating necessary variables. Helper functions for variables are included.

Usage

data_prep(survey_data, report_type = "primary")

who_score(survey_data)

mm_score(survey_data)

sehs_primary(survey_data)

sehs_secondary(survey_data)

asw_score(survey_data)

sdq_score(survey_data)

fas_score(survey_data)

Arguments

survey_data

The data to process

report_type

The type of survey data ("primary" or "secondary")

Value

data_prep: A dataframe with the required variables for rendering a report

The score-calculating functions return the dataset with relevant columns appended:

who_score: WHO 5-item wellbeing score (who_score variable) and categorical breakdown (who_cat: low/good)

mm_score: 'Me and My feelings' score for primary schools

sehs_primary: SEHS score for primary schools

sehs_secondary: SEHS score for secondary schools

asw_score: Adolescent sleep-wake score for secondary schools

sdq_score: SDQ score for secondary schools

fas_score: family affluence score (0-13)